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Abstract

A collection of research notes accumulated in the summer of
2012. The goal of the research was to prove that the quantum
channel assisted by two-way or backward classical communi-
cation is continuous.

1 Definitions and Preliminaries

We will use X , Y and Z to denote Hilbert spaces of the form
CΣ where Σ is a finite, non-empty index set. We denote the
set of linear operators of the form A : X → Y by L(X ,Y), and
L(X ) for short, when Y is the same as X . We adopt Dirac
notation throughout this paper. Now consider the following
definitions [1].

Definition 1.1. If A ∈ L(X ,Y), then

ker(A) ≡ {u ∈ X : A|u〉 = 0} is the kernel of A,

im(A) ≡ {A|u〉 : u ∈ X} is the image of A, and

supp(A) ≡ {u ∈ X : A|u〉 6= 0} is the support of A

Definition 1.2. Let A ∈ L(X ), and {ea}a∈Σ be an orthonor-
mal basis for X , then

Tr(A) ≡
∑
a∈Σ

〈ea|A|ea〉

Det(A) ≡
∑

σ∈Sym(Σ)

sgn(σ)
∏
a∈Σ

〈ea|A
∣∣eσ(a)

〉
Note that Sym(Σ) is the permutation group of Σ.

Remark 1.3. Additionally we can express the above quantities
in terms of their spectrum as

Tr(A) =
∑

λ∈spec(A)

λ and Det(A) =
∏

λ∈spec(A)

λ

Definition 1.4. The inner product on the space L(X ,Y) is
defined as

〈A,B〉 ≡ Tr(A†B)

Definition 1.5. For A,B ∈ L(X ), we define the Lie bracket
(or commutator) [A,B] ∈ L(X ) by

[A,B] ≡ AB −BA

1.1 Composite Hilbert Spaces

Given a vector space X , the Kronecker product of two vectors
u, v ∈ X is denoted by u⊗ v.

The tensor product of two Hilbert spaces say, X and Y is
defined as

X ⊗ Y ≡ span{x⊗ y : x ∈ X , y ∈ Y}

Definition 1.6. Given two Hilbert spaces X and Y, with
bases {eXi } and {eYj } repsectively. Then for any A ∈ L(X⊗Y),
we define the partial trace over X to be

TrX (A) ≡
∑
i

(〈
eXi
∣∣⊗ 1Y) A (∣∣eXi 〉⊗ 1Y)

And analagously, the partial trace over Y is defined by

TrY(A) ≡
∑
j

(
1X ⊗

〈
eYj
∣∣) A (1X ⊗ ∣∣eYj 〉)

1.2 Norms on L(X ,Y)
We will first introduce the Shatten p-norm, which gives a more
specific norm called the trace norm which is widely used in
quantum information.
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Definition 1.7. Given A ∈ L(X ,Y) and a real number p ≥ 0
the Shatten p-norm is defined to be

‖A‖p ≡
[
Tr
(

(A†A)
p/2
)]1/p

Definition 1.8. Given A ∈ L(X ,Y), we define the trace norm
of A to be

‖A‖1 ≡ Tr(
√
A†A).

Where the subscript 1 indicates that this is the Shatten 1-
norm.

1.3 Types of Linear Operators

Definition 1.9. Let A ∈ L(X ), then it is

normal if AA† = A†A,

Hermitian if A = A†.

Remark 1.10. Herm(X ) is a real inner product space of Her-
mitian linear operators.

Definition 1.11. If A ∈ L(X ), then it is called positive
semidefinite if

• A ∈ Pos(X ).

• A = B†B for some B ∈ L(X ,Y).

• 〈u|A|u〉 ≥ 0 for all u ∈ X .

• 〈B,A〉 ≥ 0 for all B ∈ Pos(X ).

• A is Hermitian and every eigenvalue of A is non-negative.

• There exists {ua : a ∈ Σ} ⊂ Y, s.t. A(a, b) = 〈ua|ub〉.

Definition 1.12. If A ∈ Pos(X ), then it is called positive
definite if

• A is invertible.

• Det(A) 6= 0.

• 〈u|A|u〉 > 0 for all u ∈ X .

• A is Hermitian, and every eigenvalue of A is positive.

• A is Hermitian, and there exists ε > 0 s.t. A ≥ ε1

Remark 1.13. For convenience, if A ∈ L(X ) is positive semi-
definite, we write A ≥ 0, and similarily if A is positive definite,
we write A > 0

Definition 1.14. If A ∈ Pos(X ), then it is called a density
operator if

• A ∈ D(X )

• Tr(A) = 1

Definition 1.15. If P ∈ L(X ), then it is called a projection
if P 2 = P . A projection is orthogonal if

• it can be written as P =
∑k
i=1 |i〉〈i|, where {|i〉} is an

orthonormal basis of some subspace of X .

• P is Hermitian.

Definition 1.16. If A ∈ L(X ,Y), then it is called a linear
isometry if

• ‖A|u〉‖ = ‖u‖ for all u ∈ X .

• A†A = 1X .

• 〈u|A†A|v〉 = 〈u|v〉 for all u, v ∈ X .

Note that a linear isometry in L(X ) is called a unitary.

Remark 1.17. If A ∈ L(X ) is unitary or Hermitian, then it is
also normal.

1.4 Useful linear algebra results

Lemma 1.18 (Hölder’s inequality). If u, v ∈ Cn, and p, q ∈
[1,∞] with 1

p + 1
q = 1, (where 1

∞ = 0), then

|〈u, v〉| ≤ ‖u‖p‖v‖q.

Theorem 1.19 (First Isomorphism). If A ∈ L(X ,Y), then

im(A) ∼= X/ ker(A)

Remark 1.20. By Theorem 1.19 we can conclude that

dim(ker(A)) + rank(A) = dim(X ).

1.5 Analysis on Superoperators

We define a superoperator to be a linear operator of the form
N : L(X ) → L(Y). We denote the space of such superop-
erators by

T(X ,Y) ≡ L[L(X ),L(Y)].

We will now introduce a few different types of superopera-
tors.

Definition 1.21. If N ∈ T(X ,Y), then it is called trace-
preserving (t.p.) if for all A ∈ L(X ), we have

Tr(N (A)) = Tr(A)

Definition 1.22. IfN ∈ T(X ,Y), then it is called hermitian-
preserving (h.p.) if for all A ∈ Herm(X ), we have that
N (A) ∈ Herm(Y).

Definition 1.23. If N ∈ T(X ,Y), then it is called completely
positive (c.p.) if for any Hilbert space Z, and for all A ∈
Pos(X ⊗ Z), we have that

N ⊗ 1L(Z)(A) ≥ 0

It is easy to see that c.p. maps are also h.p. so all of the
c.p. maps live in the ambient space of h.p. maps.

We denote the set of trace-preserving and completely posi-
tive superoperators (TCP maps) by TCP(X ,Y), or TCP(X )
when Y is the same as X .

Since quantum channels are exactly represented by TCP
maps, we will choose a specific norm that will not amplify the
difference between maps when tensored with the identity.
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Definition 1.24. GivenN ∈ T(X ,Y), we define the diamond
norm1 to be

‖N‖� ≡ max{‖N ⊗ 1L(X )(A)‖1 : A ∈ L(X⊗2), ‖A‖1 = 1}.

Note that the maximum above can be saturated by a pure
quantum state. With the given norm, we immediately gain a
metric

d(N ,M) ≡ ‖N −M‖�
and thus, a metric topology on T(X ,Y).

Definition 1.25. Given N ∈ T(X ,Y), we define an open ball
with radius δ > 0 around N to be

Bδ(N ) ≡ {M ∈ T(X ,Y) : d(N ,M) < δ}

The set {Bδ(N ) : N ∈ T(X ,Y), δ > 0} of open balls, forms
a basis for the metric topology on T(X ,Y), since every open
set in T(X ,Y), can be decomposed into unions and finite in-
tersections of open balls.

We now turn to the notion of continuity of real valued func-
tions on the space of superoperators.

Definition 1.26. Let E ⊂ T(X ,Y), and f : E → R. We say
that f is continuous at the point N ∈ E if given ε > 0, there
exists a δ > 0 s.t. M∈ E∩Bδ(N ) implies |f(M)−f(N )| < ε.
Finally, f is continuous if it is continuous at each point of E.

1.6 Entropy and Capacity Theorems

Definition 1.27. The classical (or Shannon) entropy of a
probability distribution {px}, is defined as

H({px}) ≡ −
∑
x

px log px

We will refer to “a quantum system”, say X, as some iso-
lated physical system, which is completely described by its
quantum state, ρ ∈ D(X ). Naturally two or more systems,
say X and Y , can form a composite system and it’s described
by a quantum state ρ ∈ D(X ⊗ Y). The individual systems
X and Y are in the states ρX and ρY respectively, where

ρX = TrY(ρ) and ρY = TrX (ρ).

Definition 1.28. The quantum (or von Neumann) entropy
of a quantum system X in a state ρ ∈ D(X ) is defined as

S(X)ρ ≡ −Tr(ρ log ρ)

or equivalently

S(X)ρ ≡ −
∑
i

λi log λi

where λi are eigenvalues of ρ.

Theorem 1.29 (Joint entropy theorem). Suppose the sys-
tems X and Y are prepared in the state ρ =

∑
i pi|i〉〈i| ⊗ φi

where {|i〉}i is an orthonormal basis for X . Then

S

(∑
i

pi|i〉〈i| ⊗ φi

)
= H({pi}) +

∑
i

piS (φi)

1The diamond norm is sometimes called the completely bounded trace
norm

Proof. See p. 514 in [2].

Definition 1.30. The quantum mutual information of two
systems A and B is defined to be

I(A;B) ≡ S(A) + S(B)− S(A⊗B)

Definition 1.31. The Holevo χ-quantity of an ensemble of
states E = {(px, φx)} is defined to be

χ(E) ≡ S

(∑
x

pxφx

)
−
∑
x

pxS (φx)

Theorem 1.32 (The Holevo bound). Given an ensemble of
states E = {(px, φx)} in a system X, then for any POVM
measurement {Ey}y, on X leaving the measurement outcome
in the system Y , we have

I(X;Y ) ≤ χ(E)

or equivalently

Iacc(E) ≤ χ(E)

where Iacc(E) ≡ max{I(X;Y ) : {Ey}} is the accessible infor-
mation

Lemma 1.33. Given two systems X and Y in the state ρ =∑
i pi|i〉〈i| ⊗ φi, we have that

I(X;Y )ρ = S

(∑
x

pxφx

)
−
∑
x

pxS (φx)

Proof.

I(X;Y )ρ = S(X)ρX + S(Y )ρY − S(XY )ρ (1.1)

Note that:

ρX = TrY

(∑
i

pi|i〉〈i| ⊗ φi

)
=
∑
i

piTrY (|i〉〈i| ⊗ φi) by linearity of partial trace

=
∑
i

pi|i〉〈i| since Tr(φi) = 1

ρY =
∑
i

piφi similarily

So equation (1.1) becomes

I(X;Y )ρ = H({pi}) + S

(∑
i

piφi

)
− S

(∑
i

pi|i〉〈i| ⊗ φi

)

= H({pi}) + S

(∑
i

piφi

)
−H({pi})−

∑
i

piS(φi)

= S

(∑
i

piφi

)
−
∑
i

piS(φi),

where the second equality comes from Theorem 1.29.
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Definition 1.34. The Holevo capacity2 of a channel N with
input system X and output system Y is defined to be

CH(N ) ≡ max
px,φx

I(X;Y )ρ

where X and Y are prepared in the state ρ =
∑
x px|x〉〈x| ⊗

N (φx)

It immediately follows from Lemma 1.33 that the Holevo
information can also be written as

CH(N ) ≡ max
px,φx

[
S

(∑
x

pxN (φx)

)
−
∑
x

pxS (N (φx))

]

From this point on, we will denote x⊗n by xn, where x can
be a Hilbert space, a TCP map, or a quantum state. Also
we let R+ ≡ {r ∈ R : r > 0}, and N be the strictly positive
integers. Recall that if A ⊂ X where X is some Hilbert space,
then Conv(A) denotes the convex hull of A.

Definition 1.35 (Classical Capacity). Given N ∈
TCP(X ,Y), a rate R ∈ R+ of data transmission through the
channel N is said to be classically-achievable, if for all ε > 0,
there exists n ∈ N with a classical code {φk ∈ Xn}Kn

k=1 and a
t.p. and c.p. decoding operation

Dn : D(Yn) → Conv
(
{|k〉〈k|}Kn

k=1

)
such that ∀k ∈ {1, . . . ,Kn}, we have

‖Dn(Nn(φk))− |k〉〈k|‖1 < ε, and (1.2)

logKn ≥ nR. (1.3)

The classical capacity of N , C(N ), is defined to be the supre-
mum over classically-achievable rates.

Theorem 1.36. The classical capacity satisfies

C(N ) = lim
n→∞

1

n
CH(Nn)

Note that the Holevo capacity measures the optimal rate
of transmission assuming the input state is a product state.
In contrast the classical information doesn’t make such an
assumption and indeed we have that CH(N ) ≤ C(N ) for all
channels N .

Definition 1.37 (Coherent Information). Given two systems
A and B, in some state ρ, the coherent information between
A and B is given by

Icoh(A〉B)ρ ≡ S(B)ρB − S(AB)ρ

Definition 1.38 (Quantum Capacity). Given N ∈
TCP(X ,Y), a rate R ∈ R+ of data transmission through the
channel N is said to be achievable, if for all ε > 0, there exists
n ∈ N with a subspace Cn ⊂ Xn and a decoding operation
Dn ∈ TCP(Yn, Cn) such that for any ρ ∈ D(Cn), we have

‖Dn(Nn(ρ))− ρ‖1 < ε, and (1.4)

log dimCn ≥ nR. (1.5)

The quantum capacity of N , Q(N ), is defined to be the supre-
mum over achievable rates.

2Also known as the one-shot classical capacity.

Theorem 1.39. The quantum capacity satisfies

Q(N ) = lim
n→∞

1

n
Icoh(Nn)

where
Icoh(N ) ≡ max

ρ∈D(Z⊗X )
Icoh(Z〉Y )I⊗N (ρ)

We will now describe a general protocol for quantum com-
munication assisted by two-way classical communication and
finally define the quantum capacity with two-way classical as-
sistance.

Definition 1.40. Given an n ∈ N, define an n-use protocol,
Pn, as a composition of operations performed on an input
quantum state by the two communicating parties, and by the
channel N at most n times.

A protocol such as the one described above is shown in
Figure 1.1. Here we can see thatAi is the operation performed
by Alice on the code system Cn and her auxiliary system A
to prepare for forward classical communication denoted by
M→0, and quantum communication denoted by N . On the
other side, the operation Bi, performed by Bob, receives the
sent information from Alice, prepares classical data to send
back to Alice viaM←i+1, and retains the rest of the input to
be used later. Both parties are allowed to maintain auxiliary
systems A for Alice and B for Bob to aid with communication,
for example by accumulating classical data sent throughout
the length of the protocol. This process is repeated n times.

R
. . .

|ϕ〉 Cn

A0 A1

. . .
A

. . .

• • •

A′ A′

N M→0 M←1 N M→1

•

B1

• •

B2

. . .

. . .

. . .
B

. . .

Figure 1.1: Here we show a general protocol implementing quan-
tum communication assisted by two-way classical communication.

Definition 1.41 (Quantum Capacity with two-way classical
assistance). Given N ∈ TCP(X ,Y), a rate R ∈ R+ of data
transmission using the channelN along with two-way classical
communication assistance, is said to be two-way-achievable,
if for all ε > 0, there exists n ∈ N with a subspace Cn ⊂ Xn
and an n-use protocol Pn, such that for any ρ ∈ D(Cn), we
have that

‖Pn(ρ)− ρ‖1 < ε, and (1.6)

log dimCn ≥ nR. (1.7)

The quantum capacity of N with two-way classical assis-
tance, Q2(N ), is defined to be the supremum over two-way-
achievable rates.
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Remark 1.42. Note that in each of the above definitions (1.35,
1.38 and 1.41), it is possible that no achievable rates exist. In
this case the capacity is said to be zero.

2 Peres-Horodecki criterion

Definition 2.1. Two quantum systems are separable if they
don’t share entanglement. More formally, a mixed state ρ
of the system A ⊗ B is separable if there exist probabilities
{pk ≥ 0}, and mixed states {ψk}, and {φk}, such that

ρ =
∑
k

pkψk ⊗ φk

where
∑
k pk = 1.

Definition 2.2. Given a general state ρ of the composite
system A⊗B as

ρ =
∑
i,j,k,l

pi,j,k,l|i〉〈j| ⊗ |k〉〈l|,

we define the partial transpose of ρ to be

ρΓB =
∑
i,j,k,l

pi,j,k,l|i〉〈j| ⊗ |l〉〈k|.

Theorem 2.3 (Peres-Horodecki criterion). If the mixed state
ρ of the system A⊗B has positive partial transpose (PPT),
then ρ is separable. More precisely, if ρΓB ≥ 0, then ρ is
separable.

Proof. This result is thoroughly examined in [7].

3 Understanding TCP maps

Note that any map N ∈ TCP(X ,Y), can be extended to a
map N̂ ∈ TCP(Z), without changing its capacities. So in the
following sections we will use TCP to denote TCP(X ) and T
to denote T(X ), for some arbitrary Hilbert space X .

Lemma 3.1. The set of non-t.p. maps is dense in the ambient
space of linear superoperators.

Proof. Take an ε > 0. Let N be t.p. and M, non-t.p. Define
c = ‖M − N‖�, where 0 < c < ∞ by the definition of the
diamond norm. Take 0 < δ < ε/c, and construct

Φδ = δM+ (1− δ)N .

Then we have

‖Φδ −N‖� = ‖δM+ (1− δ)N −N‖�
= ‖δ(M−N )‖�
= cδ

< ε.

So Φδ can be made arbitrarily close to N . Now we will show
that Φδ is not t.p. Take a density matrix ρ ∈ D(X ), such that
M(ρ) 6= 1. We know that such a density matrix exists since
M is not t.p. So we get

Tr(Φδ(ρ)) = Tr ([δM+ (1− δ)N ](ρ))

= δTr(M(ρ))︸ ︷︷ ︸
6=1

+(1− δ) Tr(N (ρ))︸ ︷︷ ︸
=1

6= 1.

Thus we have that the set of non-t.p. maps is dense.

It follows from the Lemma 3.1, that the interior of TCP
maps is empty when taken with respect to the metric topol-
ogy of T. This motivates us to find a more restricted ambient
space of linear superoperators that will give a non-empty in-
terior for the TCP maps.

3.1 Representations of superoperators

We will need a special mapping that gives an operator-vector
correspondence, which is described in great detail in [1],
though in this paper we allow non-standard bases. For the
following definitions, let {xi}ni=1 be a basis for X and {yk}mk=1

a basis for Y, where n = dimX and m = dimY.

Definition 3.2. Note that {ykx†i} forms a basis for L(X ,Y).
Now define the operator-vector correspondence with a linear
mapping

vec : L(X ,Y)→ Y ⊗X ,

given by

vec(ykx
†
i ) = yk ⊗ xi.

Note that this is a bijection since {yk⊗xi} is a basis for Y⊗X .

Now we will examine two important representations of su-
peroperators (Sections 5.2.1 and 5.2.2 in [1]). We will use
slightly more general versions of these representations by al-
lowing an arbitrary basis. That is we will take two arbitrary
orthonormal bases for L(X ) and L(Y), say

A = {Aa}n
2

a=1 and B = {Bb}m
2

b=1

respectively, and explore these representations with respect
to our chosen bases.

Definition 3.3. Take Φ ∈ T(X ,Y), then the natural repre-
sentation of Φ in the given bases is

K(Φ) =
∑
a,b

〈Bb,Φ(Aa)〉 vec(Bb)vec(Aa)†

If we take the bases to be normalized with respect to the
Frobenius norm, one can easily verify that the natural repre-
sentation satisfies the equation

K(Φ)vec(Aa) = vec(Φ(Aa)).

Hence K : T(X ,Y)→ L(X⊗2,Y⊗2) is a linear bijection.

Another useful representation of a linear superoperator is
the Choi-Jami lkowski representation, given by the mapping
J : T(X ,Y)→ L(Y ⊗ X ) as follows.

Definition 3.4. Let Φ ∈ T(X ,Y), then the Choi-Jami lkowski
representation of Φ is defined by

J(Φ) =
∑
a

Φ(Aa)⊗Aa

It is easy to check that J is a linear bijection.
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3.2 Characterizing superoperators

The goal of this section is to analyse the possible supersets
of TCP maps. We have already introduced trace-preserving,
hermitian-preserving, and completely positive maps. Now
consider the generalized Gell-Mann operators (GGMs) along
with the identity as a basis on the space L(X ). Let d = dimX ,
and we get three types of GGMs:

1. d(d−1)
2 symmetric

Λjks = |j〉〈k|+ |k〉〈j|, for 1 ≤ j < k ≤ d;

2. d(d−1)
2 antisymmetric

Λjka = −i|j〉〈k|+ i|k〉〈j|, for 1 ≤ j < k ≤ d;

3. (d− 1) diagonal

Λl =

√
2

l(l + 1)

 l∑
j=1

|j〉〈j| − l|l + 1〉〈l + 1|

 ,

for 1 ≤ l ≤ d− 1.

Hence we have a total of d2−1 Hermitian, traceless, and pair-
wise orthogonal GGMs. Adding the d-dimentional identity
completes the basis. Now if we normalize the above basis and
place the identity as the first basis element, we can examine
the natural representation with respect to this basis.

Proposition 3.5. For illustrative purposes, assume that X =
Cn and Y = Cm for some input and output dimensions n and
m respectively. Let Φ ∈ T(X ,Y), then the following state-
ments hold:

1. K(Φ) ∈ L(Cn,Cm).

2. Φ is h.p. iff K(Φ) ∈ L(Rn,Rm).

3. Φ is t.p. iff K(Φ) =

[
1 0 · · · 0
...

...
...

...

]
∈ L(Cn,Cm).

4. Φ is t.p and h.p. iff

K(Φ) =

[
1 0 · · · 0
...

...
...

...

]
∈ L(Rn,Rm).

Remark 3.6. A superoperator Φ ∈ T(X ,Y) is c.p. if it is h.p.
with a few additional constraints. Hence TCP maps live in
the space of maps that are both t.p. and h.p.

Sketch proof of Proposition 3.5. We will describe the reason-
ing behind each point individually:

1. Clear from the bijectivity of K.

2. It is easy to see that any Hermitian operator can be ex-
pressed as a real linear combination of the chosen general-
ized Gell-Mann operators along with the identity. Thus
any Hermitian operator is simply a real vector in the
given basis. So the hermitian preserving superoperators
precisely correspond to the linear operators that take real
vectors to real vectors in our chosen basis.

3. Since Φ is t.p. iff Φ† is unital, we have that

Φ†(1L(X )) = 1L(Y).

Now since the identity is our first basis element, we know
that

K(Φ†) =


1 · · ·
0 · · ·
... · · ·
0 · · ·

 .
Notice that K(Ψ†) = K(Ψ)† for any Ψ ∈ T(X ,Y), so we
are done.

4. This follows from parts 2 and 3.

Proposition 3.5 helps us visualize the space of superopera-
tors and its subclasses. It trivializes Lemma 3.1, and clearly
shows that the correct ambient space to use when defining the
interior of the TCP maps, is the space of t.p. and h.p. maps,
which we will denote by THP.

4 Continuity of Q2

For convenience let us define the set of channels with positive
two-way assisted quantum capacity:

Q+
2 ≡ {Φ ∈ TCP : Q2(Φ) > 0}.

There is a proof [8] of the continuity of the two-way assisted
quantum capacity, Q2, on the interior3 of Q+

2 , which we de-
note by int(Q+

2 ). Our goal is to extend this continuity result
to maps that lie outside this interior, but we will exclude the
zero-capacity channels from our domain to simplify the prob-
lem. Hence we are left to prove the following weak continuity
result.

Theorem 4.1 (Continuity of Q2). Given ε > 0 and Φ ∈ Q+
2 ,

there exists δ > 0 such that

Ψ ∈ Q+
2 ∩ Bδ(Φ) =⇒ |Q2(Ψ)−Q2(Φ)| < ε.

In [8], it is shown that Q2 is continuous on int(Q+
2 ) so it

is enough to prove the following lemma in order to conclude
Theorem 4.1.

Lemma 4.2. Given ε > 0, there exists a continuous mapping
fε : Q+

2 → int(Q+
2 ), such that for every Φ ∈ Q+

2 , we have

|Q2(fε(Φ))−Q2(Φ)| < ε.

Proof of Theorem 4.1 assuming Lemma 4.2. Take Φ ∈ Q+
2 ,

and ε > 0, and by Lemma 4.2 we take a mapping, fε. If
Φ ∈ int(Q+

2 ) then we use the proof in [8] and we are done.
Otherwise, Φ ∈ Q+

2 \int(Q+
2 ), so for any δ > 0, there exists a

δ′ > 0 such that

Ψ ∈ Q+
2 ∩ Bδ′(Φ) =⇒ fε(Ψ) ∈ Q+

2 ∩ Bδ(fε(Φ)),

3The interior of this set is taken with respect to the metric topology
of THP maps. See Proposition 3.5 for more details.
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by the continuity of fε. We use the continuity of Q2 on
int(Q+

2 ) to get a suitable δ = δ0 for the given ε. Now no-
tice that

|Q2(Φ)−Q2(Ψ)| ≤ |Q2(Φ)−Q2(fε(Φ))|
+ |Q2(fε(Φ))−Q2(fε(Ψ))|
+ |Q2(fε(Ψ))−Q2(Ψ)|
< ε+ ε+ ε.

Here the first and the last ε come from Lemma 4.2, and the
middle one comes from the continuity of Q2 on int(Q+

2 ). This
completes the proof of Theorem 4.1.

Proof of Lemma 4.2. Take an ε > 0. Let d = dimX , and
consider the mapping fε : Q+

2 → int(Q+
2 ) defined as

fε(Φ) = pεΦ̃ + (1− pε)Φ, (4.1)

where Φ̃ is the twirled channel Φ, as given by:

Φ̃(ρ) =

∫
U(d)

dµ(U)U ◦ Φ ◦ U†(ρ) (4.2)

=
∑
i

Pr(Ui)Ui ◦ Φ ◦ U†i (ρ), (4.3)

for some finite collection of unitary operations4 {Ui}. The
last equality follows from the simulation of the Haar-measure
µ by a unitary 2-design [9]... (unfinished)

5 Extending the quantum capacity

We will first examine if it makes sense to extend the von
Neuman entropy to Hermitian matrices. The end goal is to be
able to extend the definition of the quantum capacity and the
two-way assisted quantum capacity to THP maps. This will
provide us with a possibility to extend the proof of continuity
of Q2 in [8], to a bigger domain.

Recall that the entropy function is given by

S(ρ) = −
∑
i

λi log λi,

for all ρ ∈ D(X ). Now if we allow ρ to be an arbitrary Hermi-
tian matrix with unit trace, than it may have negative eigen-
values, and so the entropy may take on complex values, if we
consider the complex logarithm. So let HU(X ) denote the
set of Hermitian operators with unit trace, and consider the
von Neumann entropy function with the complex logarithm
in the principal branch. That is S : HU(X ) → C. It is easy
to check that the function η(x) = x log x is continuous on the
real domain, hence so is the entropy function on the domain
HU(X ).

Now we will check that a particular non-TCP mapping has
a quantum capacity that is close to its TCP neighbour. In
particular consider the completely random channel R and the
identity channel I. Take 0 < ε � 1, and define p = ε

1+ε . So
we have that 0 < p� 1. We can express the identity channel
as a mixture of a TCP map and a non-TCP map:

I = ((1 + ε)I − εR)(1− p) +Rp.
4We use U(ρ) = UρU† to denote unitary operations.

Naturally we expect that mixing in the completely random
channel cannot raise the quantum capacity of the channel, so
we expect that the extended quantum capacity of

Ψ ≡ (1 + ε)I − εR

should not exceed Q(I), but it should not differ from Q(I)
much either if we expect Q to be continuous.

Now we take

Q(Φ) = lim
n→∞

1

n
Icoh(Φn)

to be the definition of the quantum capacity, where

Icoh(N ) = max
ρ∈D(Z⊗X )

|Icoh(Z〉Y )I⊗N (ρ)|

= max
ρ∈D(Z⊗X )

|S(TrZ(I ⊗N (ρ)))− S(I ⊗N (ρ))|

as before, can be seen as the one shot quantum capacity. We
would like to verify that the channel Ψ has a similar capacity
to I. We will assume a 2-dimensional Hilbert space X =
C2 and compute the one shot quantum capacity of Ψ. We
will aslo assume that the state that maximizes Icoh(I) also
maximizes Icoh(Ψ). In particular if we define

β =

(
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

)
,

then we have that

Q(I) = Icoh(I)

= max
ρ∈D(Z⊗X )

|S(TrZ(I ⊗ I(ρ)))− S(I ⊗ I(ρ))|

= |S(TrZ(I ⊗ I(β)))− S(I ⊗ I(β))|
= |S(1L(X ))− S(β)| (5.1)

= 1− 0 = 1. (5.2)

So the coherent information of Ψ will be

Icoh(Ψ) = |S(TrZ(I ⊗Ψ(β)))− S(I ⊗Ψ(β))|. (5.3)

Notice that

I ⊗Ψ(β) = I ⊗ [(1 + ε)I − εR](β)

= (1 + ε)I ⊗ I(β)− εI ⊗R(β)

= (1 + ε)β − ε(TrX (β)⊗R(TrZ(β)))

= (1 + ε)β − ε( 1
21L(Z) ⊗ φ) (5.4)

where φ is some random density operator given by the com-
pletely random map, R, we can express it in terms of its
representation in the standard basis:

φ =

(
φ00 φ01

φ10 φ11

)
.

From (5.4), we can also compute the following state

TrZ(I ⊗Ψ(β)) = (1 + ε) 1
21L(X ) − εφ. (5.5)

We can now compute the eigenvalues of (5.5) and (5.4), to see
if their entropies yield a value in (5.3) that is close to (5.2). A
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direct computation gives us that the eigenvalues of (5.5) are
given by

λ± = 1
2 ±

1
2

√
1− [(1 + ε)2 + 2ε(1 + ε) + 4ε2Det(φ)]

A simple observation (See Appendix A) shows that Det(φ) is
bounded above since φ is a density matrix. Hence λ± → 1

2 as
ε→ 0, and so

S(TrZ(I ⊗Ψ(β)))
ε→0−−−→ S(1L(X )) (5.6)

by continuity of the extended entropy. Furthermore we can
determine the eigenvalues of (5.4) with the help of some soft-
ware package such as Mathematica, giving us:

µ± = ε
1

4

(
−Tr(φ)±

√
κ(φ)

)
ν± =

1

4

(
2(1 + ε)− εTr(φ)±

√
4(1 + ε)2 + ε2κ(φ)

)
,

where κ(φ) ≡ 4φ01φ10 + (φ00 − φ11)2. It is easy to see that
µ± → 0 as ε → 0. On the other hand ν+ → 1, but ν− → 0
when ε → 0. Hence the eigenvalues approach those of β in
the limit of small ε, thus giving us that

S(I ⊗Ψ(β))
ε→0−−−→ S(β). (5.7)

Now we can conclude from (5.6) and (5.7), that

Icoh(Ψ)
ε→0−−−→ Icoh(I). (5.8)

This is an example of how the quantum capacity may be ex-
tended to THP maps, and gives us reason to believe that such
an extension may also be available for other capacities, such
as the two-way assisted quantum capacity.
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A Determinant of a density matrix

Given φ ∈ D(X ), we have that Tr(φ) =
∑
i λi = 1, where λi

are the eigenvalues of φ. This means that λi ∈ [0, 1] for all i
and at least one eigenvalue is non-zero. So observe that

log(Det(φ)) = log

(∏
i

λi

)
=
∑
i

log λi ∈ (−∞, 0).

Thus we can see that

Det(φ) = 2log(Det(φ)) ∈ (0, 1).
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